# 环境成本双向核算框架下集中式光伏电站成本管控研究

李鹏宇 云南绿能新能源开发有限公司 DOI:10.12238/ej.v8i9.2962

[摘 要] 在"双碳"目标驱动下,集中式光伏电站的成本管控亟需突破传统经济性框架,纳入环境成本与绿色成本的系统化核算。本文以"环境成本双向核算框架"为核心,从正负双向外部性视角重构光伏电站全生命周期成本模型:正向核算其碳减排、生态服务等环境效益价值,逆向量化土地资源占用、组件回收处理等隐性环境成本,并结合绿色技术溢价与低碳政策工具,探索"双碳"目标导向的成本协同优化路径。

[关键词] 双碳目标; 环境成本双向核算; 绿色成本; 集中式光伏电站; 成本管控中图分类号: F045.33 文献标识码: A

# Research on cost control of centralized photovoltaic power plants under the framework of bidirectional accounting of environmental costs

Xianyu Li

Yunnan Green Energy New Energy Development Co., Ltd

[Abstract] Driven by the "dual carbon" target, the cost control of centralized photovoltaic power plants urgently needs to break through the traditional economic framework and incorporate systematic accounting of environmental and green costs. This article focuses on the "two—way accounting framework for environmental costs" and reconstructs the full life cycle cost model of photovoltaic power plants from the perspective of positive and negative externalities. It positively calculates the environmental benefits such as carbon reduction and ecological services, and inversely quantifies the implicit environmental costs such as land resource occupation and component recycling. Combining green technology premiums and low—carbon policy tools, it explores the cost collaborative optimization path guided by the "dual carbon" goal.

[Key words] dual carbon target; Dual accounting of environmental costs; Green cost; Centralized photovoltaic power station; cost control

# 引言

在全球气候变化加剧与能源结构转型的双重压力下,中国提出的"碳达峰、碳中和"目标(简称"双碳"目标)已成为推动绿色低碳经济发展的核心战略。根据国际能源署(IEA)的统计,2022年全球能源相关碳排放量达368亿吨,其中化石能源占比仍超过80%,加速可再生能源替代成为实现气候目标的必由之路。集中式光伏电站作为规模化利用太阳能资源的核心载体,其装机容量在过去十年以年均30%的增速快速扩张,截至2023年底,中国光伏累计装机容量突破4.9亿千瓦,占全球总量的40%以上。然而,在规模化发展的背后,光伏电站的成本管控仍面临严峻挑战:传统的成本核算体系以初始投资与运维成本为核心,忽视了环境外部性成本与绿色技术溢价对项目全生命周期经济性的影响,导致"重装机轻效益""重发电量轻可持续性"等问题凸显。

从政策导向看,"双碳"目标的提出不仅要求能源系统从高碳向低碳转型,更需重构能源项目的成本效益评估框架。2021年国务院发布的《关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》明确指出,需"完善能源消费强度和总量双控制度,健全碳定价机制,推动环境成本内部化"。在此背景下,光伏电站的成本管控亟需突破传统财务视角,将环境成本(如碳减排效益、生态修复成本)与绿色成本(如低碳技术投资、循环经济投入)纳入核算体系。然而,现有实践中环境成本核算方法仍存在两大瓶颈:其一,环境效益的货币化计量缺乏统一标准,碳减排收益、生物多样性保护价值等难以精准量化;其二,负外部性成本(如土地资源占用、退役组件污染)的归因与分摊机制尚未健全,导致企业决策时倾向于低估环境风险。

与此同时,国际学术界对绿色能源项目成本管理的研究已 从单一经济性分析转向多维度综合评价。联合国环境规划署

文章类型: 论文|刊号 (ISSN): 3082-8295(O) / 2630-4759(P)

(UNEP) 在《2022年可再生能源投资报告》中强调,光伏电站的全生命周期成本需整合"绿色溢价"(Green Premium)与"环境债务"(Environmental Debt)的双向影响,以实现"成本-环境-社会"三重底线的平衡。然而,现有研究多聚焦于光伏技术的降本路径(如组件效率提升、硅料价格波动),对环境成本核算的系统性框架构建仍显不足。特别是在中国语境下,集中式光伏电站往往面临土地资源紧张、生态保护红线约束、区域碳市场发展不均衡等现实问题,传统的环境成本核算模型难以适配本土化需求。因此,构建以"双碳"目标为导向、兼顾正负双向环境外部性的成本管控体系,既是理论创新的重要方向,也是实践落地的迫切需求。

### 1 研究背景及文献综述

#### 1.1集中式光伏电站成本管控的研究进展

集中式光伏电站的成本管控研究集中于管理及技术降本路径。姜润丰(2025)的实证研究表明,组件效率提升与系统优化可使光伏电站内部收益率达9.22%,但该结论建立在忽略环境外部性的理想化假设基础上。随着光伏平价上网时代的到来,学者开始关注非技术成本的影响((霍一康,2024)。在环境成本与绿色成本研究方面,前沿文献呈现两大方向:一是绿色技术溢价的经济性评价。例如,双面组件、跟踪支架等技术的额外投资可通过发电量提升获得回报(吴小刚,2014),但其成本效益比受辐照条件与电价政策影响显著(齐庆国,2025);二是循环经济模式对退役成本的削减作用。国际能源署(IEA,2023)预测,至2040年全球光伏组件废弃量将达8000万吨,若回收率不足30%,则环境治理成本将占项目总成本的5%-8%。对此,欧洲学者提出"设计—回收一再利用"(DfR)理念,主张通过模块化设计降低拆解成本(Latunussa et al.,2021),但相关实践在发展中国家尚处于试点阶段。

# 1.2环境成本核算的理论发展与争议

环境成本核算的学术脉络可追溯至20世纪70年代环境经济学的兴起。联合国《环境管理会计国际指南》将环境成本定义为"与经济活动造成的环境负荷相关的成本"(赵阳,2015),并划分为污染治理成本、资源损耗成本与生态恢复成本三类。然而,传统环境成本核算存在单向性缺陷:仅关注负外部性(如污染排放)的货币化计量,而忽视了正外部性(如碳汇功能)的价值转化(Herbohn,2005;林积泉,2006)。对此,陶德凯团队(2024)提出了将外部性内部化理论,强调了外部性收益与内部化具有高度耦合机制,这一观点为文本将环境效益与成本同步纳入核算体系提供了理论基础。

在可再生能源领域,环境成本核算的焦点逐渐转向低碳技术的综合效益评估。焦在强等人(2023)构建了光伏电站的全生命周期评价(LCA)模型,量化了从硅料生产到组件回收各阶段的碳排放强度,但其研究仍以环境影响的物理量核算为主,未深入探讨经济价值转化路径。近年来,随着碳交易市场的成熟,学者开始探索环境效益的货币化方法。沈兴林等(2024)基于中国碳市场试点数据,提出光伏项目碳减排收益的计算公式,但其模型

未考虑区域差异与政策动态调整的影响。此外, 负外部性成本的 核算仍存在争议, 光伏电站的土地占用可能造成农业生产力损 失或生态服务价值下降。

# 2 集中式光伏电站环境成本双向核算模型

#### 2.1模型构架

环境成本双向核算框架下的总成本模型其核心在于整合环境经济学的外部性内部化理论与全生命周期成本分析(LCA)方法。一方面,通过将正外部性(如碳减排效益、生态服务增益)和负外部性(如土地占用、污染处理成本)同时纳入核算,模型遵循了庇古税理论中"污染者付费"与"受益者补偿"的双向平衡原则,弥补了传统成本核算忽略环境资源市场价值的缺陷;另一方面,模型通过绿色成本与循环收益的动态耦合,体现了可持续发展理论中"经济-环境-技术"协同优化的三重底线逻辑,符合"双碳"目标下能源项目成本管控的系统性要求。

#### 2. 2模型意义

环境成本双向核算框架下的集中式光伏电站成本管控数学模型,从理论层面突破了传统能源项目成本评估的局限性,构建了一个多维度、动态化的全生命周期成本分析体系。传统的光伏电站成本核算通常仅关注初始投资、运维费用和财务成本等显性经济指标,而忽视了环境外部性(如碳排放、生态影响)和绿色技术溢价(如高效组件、智能运维)对项目长期经济性的影响。本模型通过引入双向环境成本核算,将正外部性收益(如碳减排价值、生态服务功能)与负外部性成本(如土地资源损耗、组件回收处理)同步纳入计算框架,实现了环境外部性的内部化,从而更全面地反映光伏电站的真实成本效益结构。这一理论创新不仅丰富了能源经济学中关于环境成本计量的方法论,还为"双碳"目标下的可再生能源项目评价提供了新的分析范式。

在实践层面,该模型为光伏电站的投资、建设和运营提供了可量化的决策工具,能够帮助企业在"双碳"目标下实现成本精细化管控。首先,模型通过环境成本内部化,使企业能够更准确地评估项目的真实经济性。其次,模型中的绿色技术溢价分析可辅助企业制定技术选型策略。

#### 3 结论及展望

本文以"双碳"目标为背景,聚焦集中式光伏电站的成本管控问题,提出了"环境成本双向核算框架"的创新理论模型。传统光伏电站成本核算体系以显性经济成本为核心,忽视环境外部性与绿色技术溢价的影响。本研究通过整合全生命周期分析(LCA)与环境经济学理论,构建了包含正负双向环境外部性、绿色成本及循环经济收益的综合成本模型。模型不仅量化了土地占用、组件回收等负外部性成本,还将碳减排收益、生态服务价值等正外部性效益纳入核算,实现了环境外部性的内部化。此外,模型通过引入绿色技术溢价(如高效组件、智能运维)和循环经济收益(如组件回收再利用),进一步拓展了成本

文章类型: 论文|刊号 (ISSN): 3082-8295(O) / 2630-4759(P)

管控的边界,为"经济-环境-社会"三重底线的协同优化提供了理论依据。

尽管本研究取得了重要进展,但仍存在以下局限:首先,在土地资源紧张或碳市场发展滞后地区的适用性需进一步验证。其次,环境价值核算的精度:生态服务价值(ESV)的量化仍依赖简化假设(如机会成本法),生物多样性损失等长期隐性成本的计量方法有待完善。最后,动态政策的影响:碳价波动、绿色技术迭代及政策调整的长期动态效应未在模型中充分体现,需引入时间序列分析或情景模拟方法。

未来研究可在以下方向深化。第一, 开发标准化环境价值核算工具: 联合生态学、经济学等多学科, 建立涵盖生物多样性、水土保持等指标的ESV量化体系。第二, 强化政策敏感性分析: 构建动态模型模拟碳市场、绿色金融等政策的协同效应, 为企业制定适应性策略提供支持。第三, 拓展循环经济模块: 探索光伏组件回收技术的成本效益优化路径, 推动"设计-回收-再利用"(DFR) 理念的规模化应用。

# [参考文献]

[1]陶德凯,张子建,周文莉,等.基于外部效益内部化的生态产品价值实现理论框架[J].生态学报,2024,44(16):7006-7019.

[2]焦在强,崔垚,闫兴国,等.光伏电站项目全生命周期碳排放研究[J].中国资源综合利用,2023,41(10):158-160.

[3]沈兴林,徐晶,闫启明,等.考虑碳减排效益的光伏电站经济性建模及评估[J].重庆电力高等专科学校学报,2024,29(6):31-35.

[4]姜润丰.新能源光伏电站光伏组件比选及经济性分析[J]. 价值工程,2025,44(10):26-28.

[5]吴小刚,刘宗歧,田立亭,等.独立光伏系统光储容量优化配置方法[J].电网技术,2014,38(05):1271-1276.

[6]齐庆国.光伏电站布局优化与发电效率提升策略研究[J]. 光源与照明,2025,(01):132-134.

[7]International Energy Agency.(2023). World energy out look 2023. https://www.iea.org/reports/world-energy-outlook

-2023.

[8]Latunussa, C.E. L., Ardente, F., Blengini, G. A., & Mancini, L.(2016).Life cycle assessment of photovoltaic modules: Com parison of mc—Si, InGaP and InGaP/mc—Si solar modules. Solar Energy, 130, 43—55.

[9]赵阳.试论环境管理会计国际指南研究的最新进展[J]. 科技创新导报,2015,12(29):215-216.

[10]林积泉,王伯铎,马俊杰,等.环境成本核算研究综述[J]. 工业安全与环保,2006,(05):1-4.

[11]Herbohn K .A full cost environmental accounting exp eriment[J]. Accounting, Organizations and Society, 2005, 30(6): 519-536.

[12]霍一康.光伏发电企业成本管控存在的问题及其应对策略[J].当代会计.2024(5):181-183.

[13]Intergovernmental Panel on Climate Change.(2022). Climate change 2022:Mitigation of climate change.Cambridge University Press.https://www.ipcc.ch/report/ar6/wg3/.

[14]United Nations Environment Programme.(2022). Global trends in renewable energy investment 2022.https://www.unep.org/resources/report/global-trends-renewable-energy-investment-2022.

[15]Feldman, D., Ramasamy, V.,& Margolis, R.(2021).U.S. sol ar photovoltaic system and energy storage cost benchmark: Q1 2021 (NREL/TP-7A40-80694). National Renewable Energy Labor atory.https://www.nrel.gov/docs/fy22osti/80694.pdf.

[16]International Renewable Energy Agency.(2020). Renew able power generation costs in 2020.https://www.irena.org/publications/2021/Jun/Renewable—Power—Costs—in—2020.

## 作者简介:

李鹏宇(1997--),女,彝族,云南建水人,硕士研究生,初级会计职称,主要研究方向:管理会计。